82
Bioremediation for Sustainable Environmental Cleanup
EPA Environmental Protection Agency. 2000. Introduction to Phytoremediation. EPA-report EPA/600/R-99/107.
http://clu-in.org/techpubs.html.
European Commission. 2013. No. SANCO/12571/2013 of 19 November 2013. Guidance document on analytical
quality control and validation procedures for pesticide residues analysis in food and feed, Supersedes
SANCO/12495/2011. Implemented by 01/01/2014.
de Farias, V., L. T. Maranho, E. C. de Vasconcelos, M. A. da Silva Carvalho Filho, L. G. Lacerda, J. A. M. Azevedo,
A. Pandey and C. R. Soccol. 2009. Phytodegradation potential of Erythrina crista-galli L., Fabaceae, in
petroleum-contaminated soil. Appl. Biochem. Biotechnol. 157(1): 10–22. https://doi.org/10.1007/s12010
009-8531-1.
Gan, S., E. V. Lau and H. K. Ng. 2009. Remediation of soils contaminated with polycyclic aromatic hydrocarbons
(PAHs). J. Hazard. Mater. 172(2-3): 532–549.
Gatliff, E. G. 1994. Vegetative remediation process offers advantages over traditional pump‐and‐treat
technologies. Remediat. J. 4(3): 343–352.
Ghavzan, N. J. and R. K. Trivedy. 2005. Environmental pollution control by using phytoremediation technology. Poll.
Res. 24(4): 875–884.
Guo, Y., C. Qiu, S. Long, H. Wang and Y. Wang. 2020. Cadmium accumulation, translocation, and assessment of
eighteen Linum usitatissimum L. cultivars growing in heavy metal contaminated soil. Int. J. Phytoremediat.
22(5): 490–496.
Gupta, H. and R. Kumar. 2020. Distribution of selected polycyclic aromatic hydrocarbons in urban soils of Delhi,
India. Environ. Technol. Innov. 17: 100500.
Gutiérrez-Ginés, M. J., A. J. Hernández, M. I. Pérez-Leblic, J. Pastor and J. Vangronsveld. 2014. Phytoremediation
of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and
associated endophytic bacteria. J. Environ. Manag. 143: 197–207.
He, Y. and J. Chi. 2019. Pilot-scale demonstration of phytoremediation of PAH-contaminated sediments by Hydrilla
verticillata and Vallisneria spiralis. Environ. Technol. 40(5): 605–613.
Henry, J. R. 2000. An overview of the phytoremediation of lead and mercury. pp. 1–31. Washington, DC: US
Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation
Office.
Honda, M. and N. Suzuki. 2020. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ.
Res. Public Health. 17(4): 1363.
Houshani, M., S. Y. Salehi-Lisar, R. Motafakkerazad and A. Movafeghi. 2021. Proposed pathways for phytodegradation
of phenanthrene and pyrene in maize (Zea Mays L.) using GC-MS analysis. Research Square. DOI: https://doi.
org/10.21203/rs.3.rs-1110084/v1.
Hussain, F., A. H. A. Khan, I. Hussain, A. Farooqi, Y. S. Muhammad, M. Iqbal, M. Arslan and S. Yousaf. 2022. Soil
conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium
multiflorum. Environ. Sci. Pollut. Res. 29(6): 9097–9109.
Hussain, K. and R. R. Hoque. 2015. Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere.
119: 794–802.
Ignatius, A., V. Arunbabu, J. Neethu and E. V. Ramasamy. 2014. Rhizofiltration of lead using an aromatic medicinal
plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ. Sci.
Pollut. Res. 21(22): 13007–13016.
Imam, A., S. K. Suman, P. K. Kanaujia and A. Ray. 2022. Biological machinery for polycyclic aromatic hydrocarbons
degradation: a review. Bioresour. Technol. 343: 126121.
Jacobs, A., T. Drouet, T. Sterckeman and N. Noret. 2017. Phytoremediation of urban soils contaminated with trace
metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges’
in field trials. Environ. Sci. Pollut. Res. 24(9): 8176–8188.
Jeelani, N., W. Yang, L. Xu, Y. Qiao, S. An and X. Leng. 2017. Phytoremediation potential of Acorus calamus in soils
co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci. Rep. 7: 8028.
Jia, H., H. Wang, H. Lu, S. Jiang, M. Dai, J. Liu and C. Yan. 2016. Rhizodegradation potential and tolerance of
Avicennia marina (Forsk.) Vierh in phenanthrene and pyrene contaminated sediments. Mar. Pollut. Bull.
110(1): 112–118.
Jiang, Y., U. J. Yves, H. Sun, X. Hu, H. Zhan and Y. Wu. 2016. Distribution, compositional pattern and sources of
polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol. Environ.
Saf. 126: 154–162.
Jiao, H., Q. Wang, N. Zhao, B. Jin, X. Zhuang and Z. Bai. 2017. Distributions and sources of polycyclic aromatic
hydrocarbons (PAHs) in soils around a chemical plant in Shanxi, China. Int. J. Environ. Res. Public
Health 14(10): 1198.